

4.1 Introduction

- Significant level of outsourcing
- Many leading brand OEMs outsource complete manufacturing and design of their products
- More outsourcing has meant
 Search for lower cost manufacturers
 Development of design and manufacturing out
 - Development of design and manufacturing expertise by suppliers
- Recurement function in OEMs becomes very important
 - OEMs have to get into contracts with suppliers
 For both strategic and non-strategic components

4-2

4.2 Strategic Components

Supply Contract can include the following:

- Pricing and volume discounts.
- Minimum and maximum purchase quantities.

Delivery lead times.

- Product or material quality.
- Product return policies.

2-Stage Sequential Supply Chain

- A buyer and a supplier.
- Buyer's activities:
 - generating a forecast
 - determining how many units to order from the supplier
- placing an order to the supplier so as to optimize his own profit
- Purchase based on forecast of customer demand
- Supplier's activities:
 - reacting to the order placed by the buyer.
 - Make To-Order (MTO) policy

Swimsuit Example

- 2 Stages:
 - a retailer who faces customer demand
 - a manufacturer who produces and sells swimsuits to the retailer.
- Retailer Information:
 - Summer season sale price of a swimsuit is \$125 per unit.
 - Wholesale price paid by retailer to manufacturer is \$80 per unit.
- Salvage value after the summer season is \$20 per unit
- Manufacturer information:
 - Fixed production cost is \$100,000
 - Variable production cost is \$35 per unit

- What Is the Optimal Order Quantity?
- Retailer marginal profit is the same as the marginal profit of the manufacturer, \$45.
- Retailer's marginal profit for selling a unit during the season, \$45, is smaller than the marginal loss, \$60, associated with each unit sold at the end of the season to discount stores.
- Optimal order quantity depends on marginal profit and marginal loss but not on the fixed cost.
- Retailer optimal policy is to order 12,000 units for an average profit of \$470,700.
 - If the retailer places this order, the manufacturer's profit is 12,000(80 35) 100,000 = \$440,000

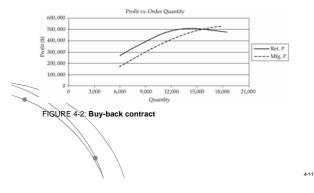
4-3

Sequential Supply Chain

Risk Sharing

- In the sequential supply chain:
 - Buyer assumes all of the risk of having more inventory than sales
 - Buyer limits his order quantity because of the huge financial risk.
 - Supplier takes no risk.
 - Supplier would like the buyer to order as much as possible
 - Since the buyer limits his order quantity, there is a significant increase in the likelihood of out of stock.
- If the supplier shares some of the risk with the buyer
 - it may be profitable for buyer to order more
 - reducing out of stock probability
 - increasing profit for both the supplier and the buyer.
- Supply contracts enable this risk sharing

Buy-Back Contract


- Seller agrees to buy back unsold goods from the buyer for some agreed-upon price.
- Buyer has incentive to order more
- Supplier's risk clearly increases.
 - Increase in buyer's order quantity
 - Decreases the likelihood of out of stock
 - Compensates the supplier for the higher risk

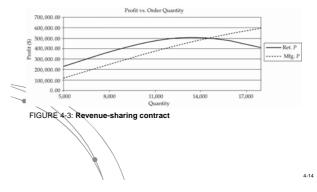
4-9

Buy-Back Contract Swimsuit Example

- Assume the manufacturer offers to buy unsold swimsuits from the retailer for \$55.
- Retailer has an incentive to increase its order quantity to 14,000 units, for a profit of \$513,800, while the manufacturer's average profit increases to \$471,900.
- Total average profit for the two parties
 = \$985,700 (= \$513,800 + \$471,900)
 - Compare to sequential supply chain when total profit = \$910,700 (= \$470,700 + \$440,000)

Buy-Back Contract Swimsuit Example

Revenue Sharing Contract


- Buyer shares some of its revenue with the supplier
 - in return for a discount on the wholesale price.
- Buyer transfers a portion of the revenue from each unit sold back to the supplier

Revenue Sharing Contract Swimsuit Example

- Manufacturer agrees to decrease the wholesale price from \$80 to \$60
- In return, the retailer provides 15 percent of the product revenue to the manufacturer.
- Retailer has an incentive to increase his order quantity to 14,000 for a profit of \$504,325
- This order increase leads to increased
- manufacturer's profit of \$481,375Supply chain total profit

= \$985,700 (= \$504,325+\$481,375).

Revenue Sharing Contract Swimsuit Example

Other Types of Contracts

4-13

4-15

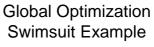
4-17

• Quantity-Flexibility Contracts

- Supplier provides full refund for returned (unsold) items
- As long as the number of returns is no larger than a certain quantity.

Sales Rebate Contracts

 Provides a direct incentive to the retailer to increase sales by means of a rebate paid by the supplier for any item sold above a certain quantity.


Global Optimization Strategy

- What is the best strategy for the entire supply chain?
- Treat both supplier and retailer as one entity
- Transfer of money between the parties is ignored

Global Optimization Swimsuit Example

Relevant data

- Selling price, \$125
- Salvage value, \$20
- Variable production costs, \$35Fixed production cost.
- Supply chain marginal profit, 90 = 125 35
- Supply chain marginal profit, $30 = 123 \cdot 3$. • Supply chain marginal loss, 15 = 35 - 20
- Supply chain will produce more than average demand.
- Optimal production quantity = 16,000 units
- Expected supply chain profit = \$1,014,500.

Global Optimization and Supply Contracts

- Unbiased decision maker unrealistic · Requires the firm to surrender decision-making power to an unbiased decision make
- Carefully designed supply contracts can achieve as much as global optimization
- Global optimization does not provide a mechanism to allocate supply chain profit between the partners.
- Supply contracts allocate this profit among supply chain members.
- Effective supply contracts allocate profit to each partner in a way that no partner can improve his profit by deciding to deviate from the optimal set of decisions.

Implementation Drawbacks of Supply Contracts

Buy-back contracts

4-19

4-21

4-23

- Require suppliers to have an effective reverse logistics system and may increase logistics costs.
- Retailers have an incentive to push the products not under the buy back contract.
- Retailer's risk is much higher for the products not under the buy back contract.

Revenue sharing contracts

- Require suppliers to monitor the buyer's revenue and thus
 mcreases administrative cost.
 - Buyers have an incentive to push competing products with higher profit margins.

Similar products from competing suppliers with whom the buyer has no revenue sharing agreement.

4-20

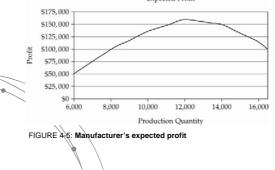
4.3 Contracts for Make-to-Stock/Make-to-Order Supply Chains

- Previous contracts examples were with Make-to-Order supply chains
- What happens when the supplier has a Make-to-Stock situation?

Supply Chain for Fashion Products **Ski-Jackets**

Manufacturer produces ski-jackets prior to receiving distributor orders

- Season starts in September and ends by December.
- Production starts 12 months before the selling season
- Distributor places orders with the manufacturer six months . later.
- · At that time, production is complete; distributor receives firms orders from retailers.
- The distributor sales ski-jackets to retailers for \$125 per unit.
- The distributor pays the manufacturer \$80 per unit.
- For the manufacturer, we have the following information: Fixed production cost = \$100,000.
 - The variable production cost per unit = \$55
 - Salvage value for any ski-jacket not purchased by the distributors= \$20.


4-22

4-24

Profit and Loss

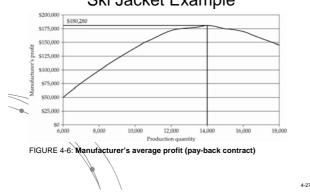
- · For the manufacturer
 - Marginal profit = \$25
 - Marginal loss = \$60.
 - Since marginal loss is greater than marginal profit, the distributor should produce less than average demand, i.e., less than 13, 000 units.
- How much should the manufacturer produce? • Manufacturer optimal policy = 12,000 units
 - Average profit = \$160,400.
 - Distributor average profit = \$510,300.
- Manufacturer assumes all the risk limiting its production quantity
- Distributor takes no risk

Make-to-Stock Ski Jackets Expected Profit

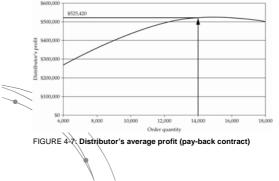
Pay-Back Contract

- Buyer agrees to pay some agreed-upon price for any unit produced by the manufacturer but not purchased.
- Manufacturer incentive to produce more units
- Buyer's risk clearly increases.
- Increase in production quantities has to compensate the distributor for the increase in risk.

Pay-Back Contract Ski Jacket Example


- Assume the distributor offers to pay \$18 for each unit produced by the manufacturer but not purchased.
- Manufacturer marginal loss = 55-20-18=\$17
 Manufacturer marginal profit = \$25.
- Manufacturer has an incentive to produce more than average demand.
- Manufacturer increases production quantity to 14,000
 units
- Manufacturer profit = \$180,280
- Distributor profit increases to \$525,420.
 Total profit = \$705,400
- Compare to total profit in sequential supply chain = \$670,000 (= \$160,400 + \$510,300)

4-26


4-28

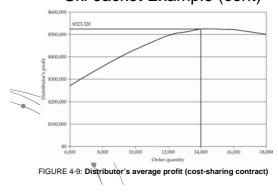
4-30

Pay-Back Contract Ski Jacket Example (cont)

Cost-Sharing Contract

- Buyer shares some of the production cost with the manufacturer, in return for a discount on the wholesale price.
- Reduces effective production cost for the manufacturer

Cost-Sharing Contract Ski-Jacket Example


- Manufacturer agrees to decrease the wholesale price from \$80 to \$62
- In return, distributor pays 33% of the manufacturer production cost
- Manufacturer increases production quantity to 14,000
- Manufacturer profit = \$182,380
 - Distributor profit = \$523,320
 - The supply chain total profit = \$705,700 Same as the profit under pay-back contracts

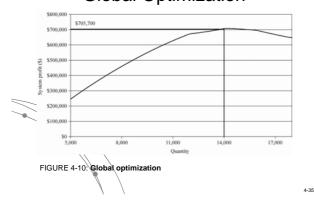
4-25

5

Cost-Sharing Contract Ski-Jacket Example (cont)

Implementation Issues

- Cost-sharing contract requires manufacturer to share production cost information with distributor
- Agreement between the two parties:
 - Distributor purchases one or more
 - components that the manufacturer needs.
 - Components remain on the distributor books but are shipped to the manufacturer facility for the production of the finished good.


- Relevant data:
 - Selling price, \$125
 Salvage value, \$20

4-33

- Salvage value, \$20
 Variable production costs, \$55
- Variable production costs, \$
 Fixed production cost.
- Cost that the distributor pays the manufacturer is meaningless
- Supply chain marginal profit, 70 = 125 55
- Supply chain marginal loss, 35 = 55 20
- Supply chain will produce more than average demand.
- Optimal production quantity = 14,000 units
- Expected supply chain profit = \$705,700
- Same profit as under pay-back and cost sharing contracts

4-36

Global Optimization

4.4 Contracts with Asymmetric Information

- Implicit assumption so far: Buyer and supplier share the same forecast
- Inflated forecasts from buyers a reality
- How to design contracts such that the
- information shared is credible?

Two Possible Contracts

- Capacity Reservation Contract
 - Buyer pays to reserve a certain level of capacity at the supplier
 - A menu of prices for different capacity reservations provided by supplier
 - Buyer signals true forecast by reserving a specific capacity level
- Advance Purchase Contract
 - Supplier charges special price before building capacity
 - When demand is realized, price charged is different
 - Buyer's commitment to paying the special price reveals the buyer's true forecast

4.5 Contracts for Non-Strategic Components

- · Variety of suppliers
- Market conditions dictate price
- Buyers need to be able to choose suppliers and change them as needed
- Long-term contracts have been the tradition
- Recent trend towards more flexible contracts
 - Offers buyers option of buying later at a different price than current
 - Offers effective hedging strategies against shortages

Flexible or Option Contracts

· Supplier commits to reserve capacity up to a certain

• Initial payment is the reservation price or premium.

• If buyer does not exercise option, the initial payment

Buyer can purchase any amount of supply up to the

• agreed to at the time the contract is signed

• paying an additional price (execution price or exercise

 Total price (reservation plus execution price) typically higher than the unit price in a long-term contract.

· Buyer pre-pays a relatively small fraction of the

product price up-front

level.

is lost.

option level by:

price)

Long-Term Contracts

- Also called forward or fixed commitment contracts
- Contracts specify a fixed amount of supply to be delivered at some point in the future
- Supplier and buyer agree on both price and
- quantity
- Buyer bears no financial risk
- Buyer takes huge inventory risks due to:
 - uncertainty in demand
 - inability to adjust order quantities.

4-39

4-41

4-3

Flexible or Option Contracts

- Provide buyer with flexibility to adjust order quantities depending on realized demand
- Reduces buyer's inventory risks.
- Shifts risks from buyer to supplier
- Supplier is now exposed to customer demand uncertainty.
- Flexibility contracts
 - Related strategy to share risks between suppliers and buyers
 - A fixed amount of supply is determined when the contract is signed
 - Amount to be delivered (and paid for) can differ by no more than a given percentage determined upon signing the contract.

Spot Purchase

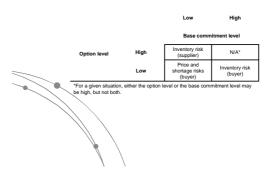
- Buyers look for additional supply in the open market.
- May use independent e-markets or private e-markets to select suppliers.
- Focus:
 - Using the marketplace to find new suppliers
 - Forcing competition to reduce product price.
- 4-42

Portfolio Contracts

- Portfolio approach to supply contracts
- Buyer signs multiple contracts at the same time
 - optimize expected profit
 - reduce risk.
- Contracts
- differ in price and level of flexibility
 - hedge against inventory, shortage and spot price risk.
 - Meaningful for commodity products
 - a large pool of suppliers
 - · each with a different type of contract.

Appropriate Mix of Contracts

- · How much to commit to a long-term contract? • Base commitment level
- How much capacity to buy from companies selling option contracts? Option level
- How much supply should be left uncommitted? · Additional supplies in spot market if demand is high
- Hewlett-Packard's (HP) strategy for electricity or memory products
- About 50% procurement cost invested in long-term contracts 35% in option contracts
 - · Remaining is invested in the spot market.


Risk Trade-Off in Portfolio Contracts

- If demand is much higher than anticipated
 - Base commitment level + option level < Demand,
 - Firm must use spot market for additional supply. • Typically the worst time to buy in the spot market
 - Prices are high due to shortages.
- Buyer can select a trade-off level between price risk, shortage risk, and inventory risk by carefully selecting the level of long-term commitment and the option level.
 - For the same option level, the higher the initial contract commitment, the smaller the price risk but the higher the inventory risk taken by the buyer.
 - The smaller the level of the base commitment, the higher the
 - price and shortage risks due to the likelihood of using the spot market.
 - For the same level of base commitment, the higher the option level, the higher the risk assumed by the supplier since the buyer may exercise only a small fraction of the option level.

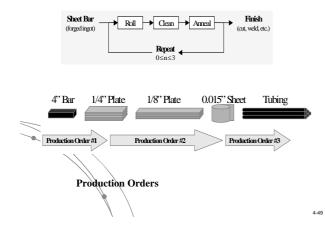
4-47

4-43

Risk Trade-Off in Portfolio Contracts

4-46

4-44


CASE: H. C. Starck, Inc.

- Background and context
- Why are lead times long?
- How might they be reduced?
- What are the costs? benefits?

Metallurgical Products

- Make-to-order job shop operation
- 600 sku's made from 4" sheet bar (4 alloys)
- · Goal to reduce 7-week customer lead times
- · Expediting is ad hoc scheduling rule
- Six months of inventory
- Manufacturing cycle time is 2 3 weeks

Limited data

Why Is Customer Lead Time 7 Weeks?

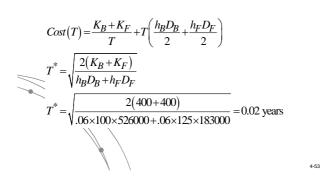
- From sales order to process order takes 2 weeks
- Typical order requires multiple process orders, each 2 – 3 weeks
- Expediting as scheduling rule
- Self fulfilling prophecy?

What Are Benefits from Reducing Lead Time?

- New accounts and new business
- Protect current business from switching to substitutes or Chinese competitor
- Possibly less inventory
- Better planning and better customer
 service
 - Savings captured by customers?

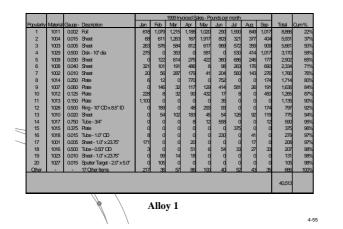
How Might Starck Reduce Customer Lead Times?

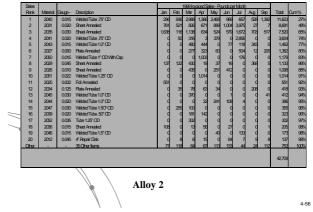
- Hold intermediate inventory
 - How would this help?
 - How much? Where?
- Eliminate paper-work delays
- Reduce cycle time for each process order
- How? What cost?

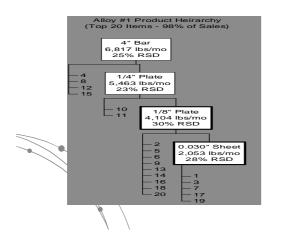

4-51

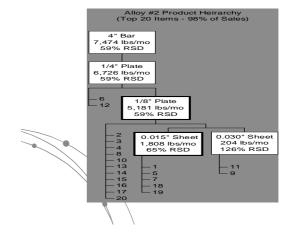
4-52

4-54

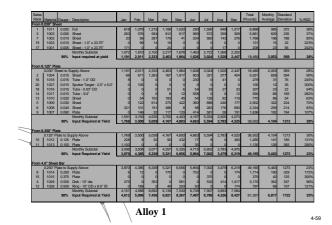

4-50

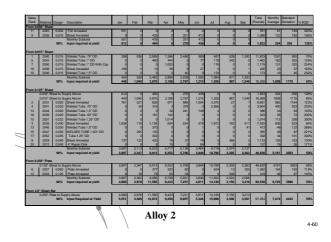

Two-Product Optimal Cycle Time




Intermediate Inventory

- Characterize demand by possible intermediate for each of two alloys
- Pick stocking points based on risk pooling benefits, lead time reduction, volume
- Determine inventory requirements based
 on inventory model, e. g. base stock





4-57

Material	Monthly Demand	Monthiy Sigma		Average (Pipeline)	Period Sigma	Service Level	Reliability Factor	Buffer	Safety	Total
Alloy#1										
0.125" Plate	4,104	1,213	1	947	583	95%	90%	958	191	2,100
0.030" Sheet	2,053	569	1	474	273	95%	90%	450	92	1,020
<u>Alloy #2</u> 0.125" Plate 0.015" Sheet	5,181 1,808	3,053 1,175		1,196 417	1,467 564	95% 95%	90% 90%	2,412 928	361 135	3,970 1,480

Estimated Inventory Requirements

Case Summary

- Demonstrate applicability of risk pooling and postponement, EOQ modeling, and inventory sizing to improve customer service in make-to-order job shop setting
- Demonstrates value from getting and looking at data

4-61